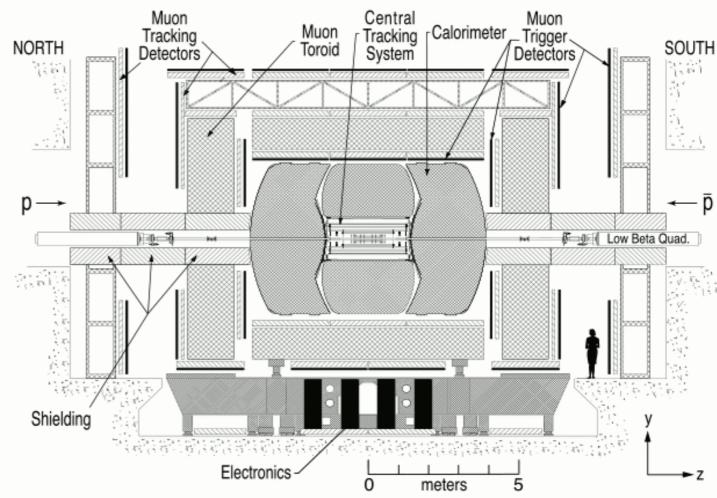


Determination of the Strong Coupling Constant from Inclusive Jet Production Cross Section and Double Parton Interactions in γ +3-jets events

Dmitry Bandurin

Kansas State University

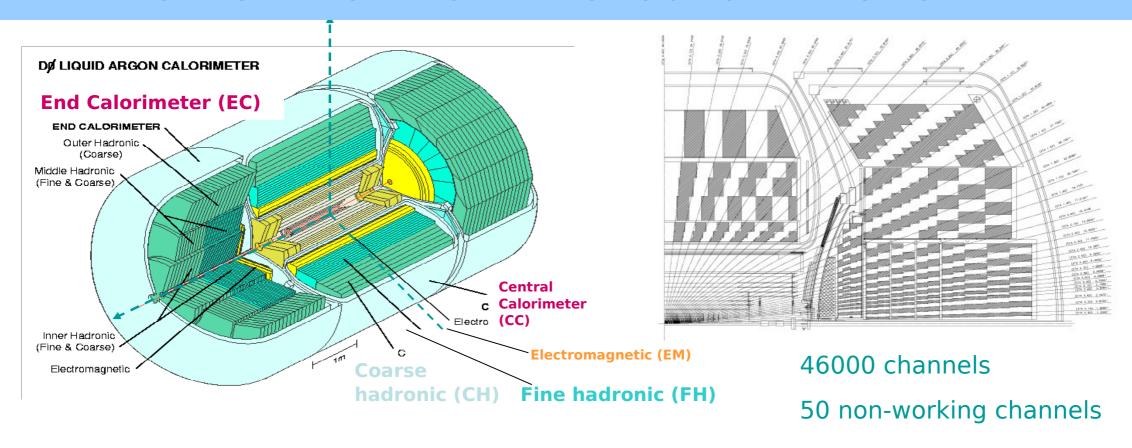
on behalf of the DØ Collaboration


Fermilab Joint Experimental-Theoretical Physics Seminar December 11, 2009

Outline

- Dzero detector
- Determination of the Strong Coupling Constant from Inclusive Jet Production Cross Section.
- lacktriangle Double Parton Interactions in $\gamma+3$ -jets events; measurements of fraction of Double Parton events and effective cross section $\sigma_{\rm eff}$.
- Summary

The Dzero detector



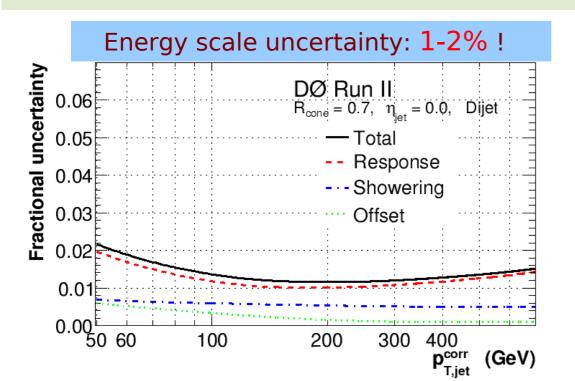
Three main systems

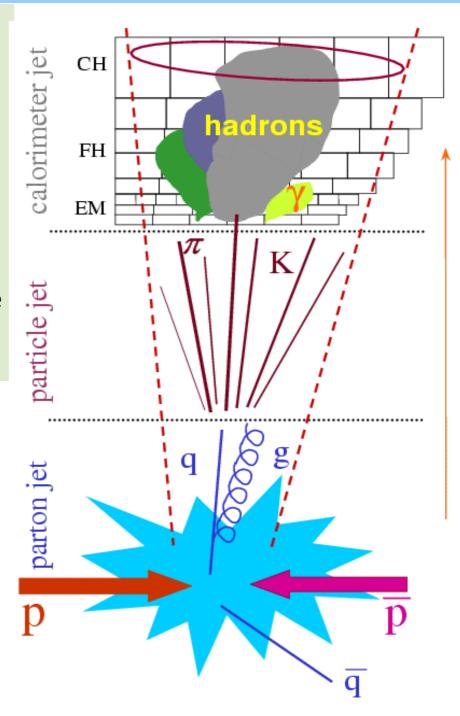
- Tracker (silicon and scintillating fibers)
- Calorimeter (LAr/U, some scintillators)
- Muon chambers and scintillators

Overview of the calorimeter

- ✓ Liquid argon active medium and (mostly) uranium absorber
- ✓ Hermetic with full coverage : $|\eta|$ < 4.2
- ✓ Segmentation (towers): $\Delta \eta \times \Delta \Phi = 0.1 \times 0.1$ (0.05 \times 0.05 in 3 rd EM layer)
- ✓ Three main subregions: Central ($|\eta|$ <1.1), Intercryostat (1.1< $|\eta|$ <1.5) and End calorimeters (1.5 < $|\eta|$ < 4.2)
- ✓ Stable response, good resolution

Time


Jets, particles and partons


- We do not "see" partons or particles in calorimeter, only ADC counts
- ADC counts --> cell energies
- Run jet cone algorithm with

 $\Delta R = \sqrt{(\Delta y^2 + \Delta \Phi^2)} < R_{\text{cone}}$

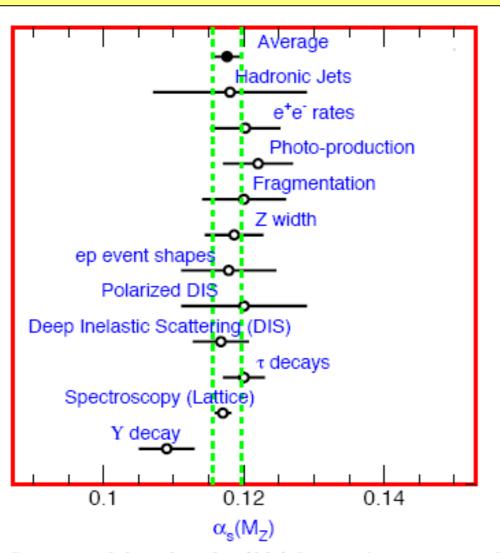
Jet energy is corrected to the particle level using the Jet Energy Scale (JES) procedure :

- Calibrate using γ +jets, dijets and Z+jets
- JES includes: Energy Offset (energy not from the hard scattering process); Detector Response Out-of-Cone showering; Resolution

As Determination

- Motivations
- Data set
- Basic fit principle
- PDFs and α_s
- PDFs and input data
- Results

$\alpha_{\rm S}$ and the RGE


- α s(μ r) depends on renormalization scale μ r
 - ✓ It is not predicted in QCD.
 - ✓ It should be determined in experiment
- Renormalization Group Equation (RGE) predicts μ r dependence
- The measured values of $\alpha_s(\mu_r)$ can be evolved to the mass of Z boson (common agreement) by using the solution to the 2-loop RGE

$$\alpha_s(M_Z) = \frac{\alpha_s(\mu_R)}{1 - \alpha_s(\mu_R)(b_0 + b_1\alpha_s(\mu_R))\ln(\mu_R/M_Z)}$$
 (2- and 3-loop RGE solutions are used in this analysis)

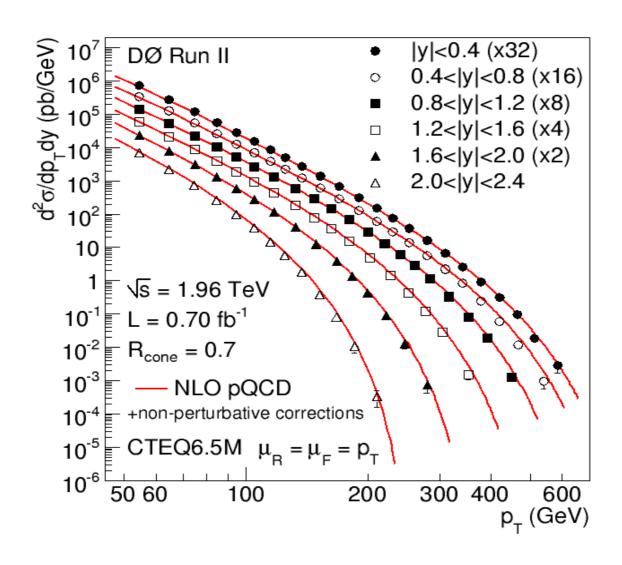
• In jet production: $\mu_r = \text{jet pT}$

Status of α_s measurements

From: 2008 Review of Particle Physics

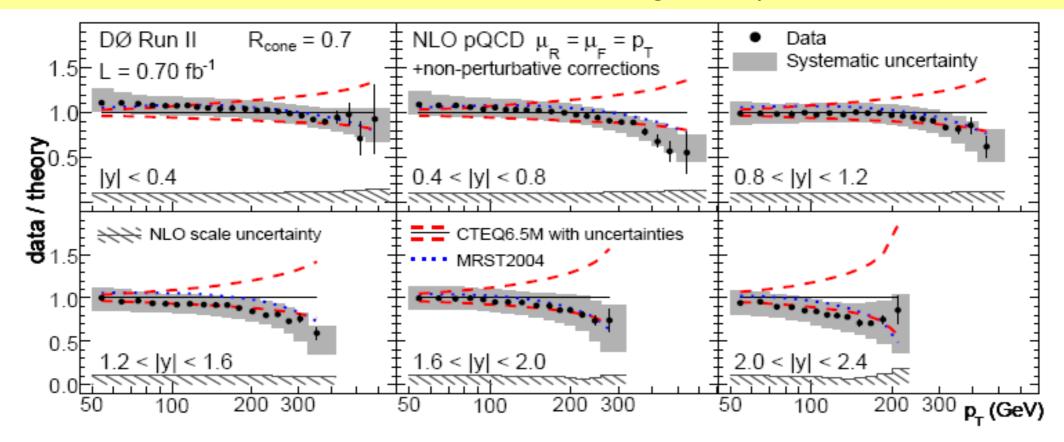
Large uncertainty for entry from "Hadronic Jets"

- → Not very competitive with other relevant results
- → Can (and should) be improved!


Now we have:

- More and better data
- Better theory

Figure 9.1: Summary of the value of $\alpha_s(M_Z)$ from various processes. The values shown indicate the process and the measured value of α_s extrapolated to $\mu = M_Z$. The error shown is the *total* error including theoretical uncertainties. The average quoted in this report which comes from these measurements is also shown. See text for discussion of errors.


Run IIa Inclusive Jet Data (1)

D0 inclusive jet results: 110 cross section data points in six |y| regions: PRL 101, 062001 (2008)

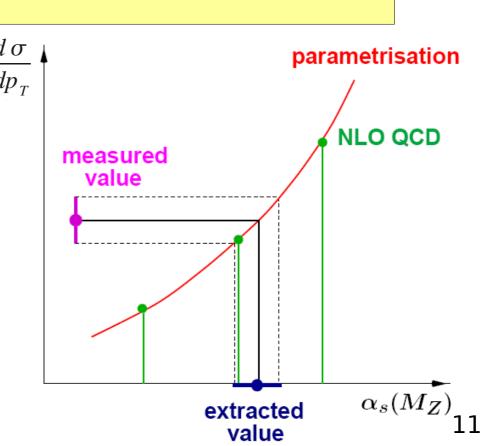
Run IIa Inclusive Jet Data (2)

- The systematic errors are significantly reduced due to excellent results of Jet Energy Scale group
- Overall uncertainties allow now to better distinguish a preferred PDF set

Every single data point is sensitive to α s(pT)

- \rightarrow Sensitive to running of α s(pT)
- \rightarrow Combined fit (of **selected** data points): α s(Mz) result

Basic priciple (naïve version)


Cross section formula:

$$\sigma_{\text{theory}}(\alpha_s) = \left(\sum_n \alpha_s^n c_n\right) \otimes f_1 \otimes f_2$$

- cn: perturbative coefficients (→ pQCD matrix elements)
- f1, f2: PDFs of colliding p, \overline{p}

Determine α s from data:

- Vary lphas until σ theory agrees with σ exper
- ...for each single bin →

αs dependence of PDFs

- PDFs are always determined for a given value of α s(Mz)
 - \rightarrow PDF fit results depend on α s

Naïve x-section formula must be modified to take α s dependence of PDFs into account:

$$\sigma_{\text{theory}}(\alpha_s) = \left(\sum_n \alpha_s^n c_n\right) \otimes f_1(\alpha_s) \otimes f_2(\alpha_s)$$

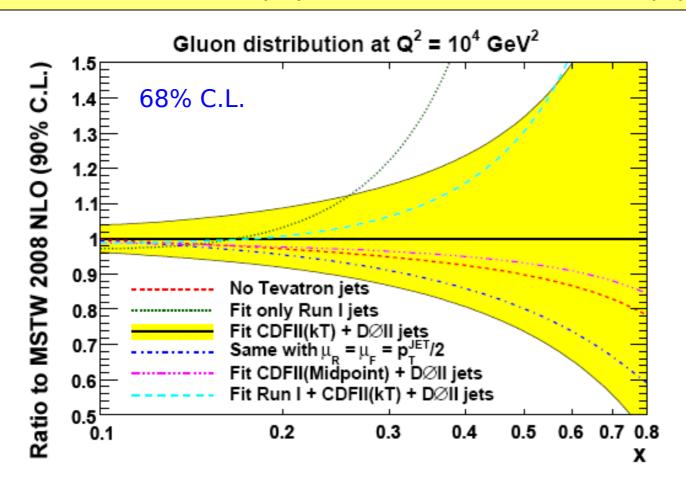
Vary α s in matrix elements **AND** in PDFs until σ theory(α s) = σ exper

- \rightarrow Ideally need continuous α s dependence of PDFs
- \rightarrow Requires: interpolation between cross section for PDFs with different α s(Mz) values

α_s dependence of PDFs (2)

Interpolation must cover whole range of possible uncertainties

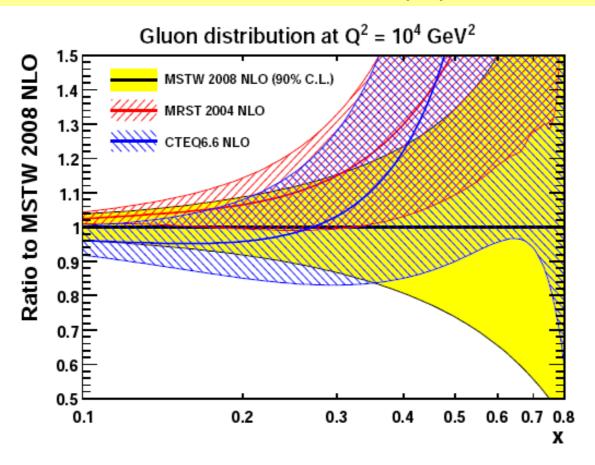
→ test interpolation over: $0.105 < \alpha_s(Mz) < 0.130$


- MSTW2008 has 21 PDFs sets (NLO and NNLO!)
 for αs within 0.107-0.127 in 0.001 steps (→ 21 "nodes")
 → use interpolation for points in between those 21
 - → used for the default results
- CTEQ6.6 has **five** PDFs sets (NLO only) for α s(Mz)=0.112, 0.114, 0.118, 0.122, 0.125 (5 "nodes")
 - → used for a comparison

PDFs and input data (1)

- Tevatron Runll jet data have already been used in MSTW2008 PDF fits
 - → only source of high-x gluon information
- α s extraction would be circular argument
- PDFs uncertainties are correlated to experimental uncertainties (but correlation is not documented)
- → Restrict the data set used in the fit to x-values where Tevatron jets are not the dominant source of information
- \rightarrow Somewhere up to x = 0.2-0.3 (see next slide)

PDFs and input data (2)


from MSTW2008 paper (arXiv:0901.0002 [hep-ph])

→ Tevatron jet data do not affect gluon PDF for x < 0.2 - 0.3

PDFs and input data (3)

from MSTW2008 paper

- CTEQ6.6 does not use Tevatron Run II jet data
- But MSTW2008 and CTEQ6.6 results are in agreement for x < 0.3

x-sensitivity?

Jet cross section has access to x-values of: (in LO kinematics)

$$x_a = x_T \frac{e^{y_1} + e^{y_2}}{2}, \quad x_b = x_T \frac{e^{-y_1} + e^{-y_2}}{2} \text{ with } x_T = \frac{2p_T}{\sqrt{s}}.$$

What is the x-value for a given incl. jet data point @(pT, |y|)?

- → Not completely constrained (unknown kinematics since we integrate over other jet)
- \rightarrow Construct 'test-variable' (treat as if other jet was at y=0):

$$x_{\text{test}} = x_T \cdot (e^{|y|} + 1)/2$$

- → Apply cut on this test-variable to restrict accessible x-range
- \rightarrow Requirement **x-test** < **0.15** removes most of the contributions with x>0.25
- → 22 points are remaining (4 points for jet pT 50-60, ...,1 point for 130-145 GeV)

Theory

Use **two alternative** theory predictions:

pQCD:

- NLO + 2-loop threshold corrections ('NLO + 2-loop') (threshold corrections from Kidonakis/Owens)
- NLO

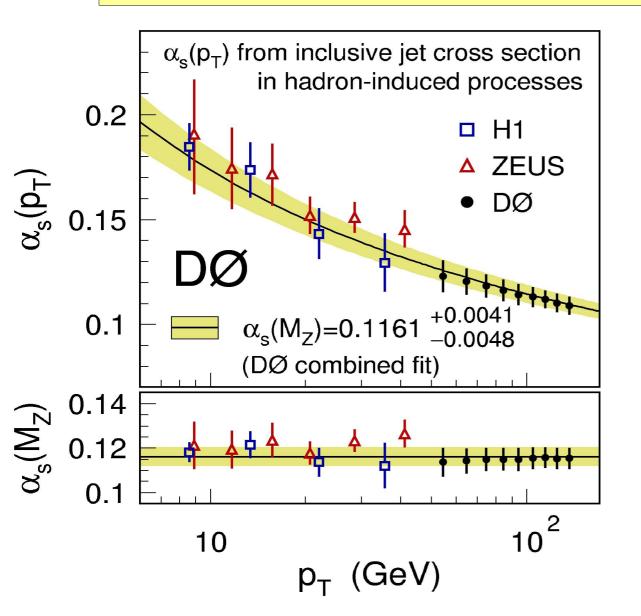
Uncertainties: scale dependence mu=pT (+ x0.5, x2.0)

PDFs:

- MSTW2008NNLO (for 'NLO+2-loop')
- MSTW2008NLO (for NLO)

Uncertainties: from 20 PDF eigenvectors (68%CL)

Non perturbative corrections: (hadronization / underlying events)


from PYTHIA (as published with data)

Uncertainties: - half the size of the correction

- separately for hadronization and underlying events

Measurement of $\alpha_s(pT)$

- Combine points in different |y| regions at same pT
 - \rightarrow Produce 9 α s(pT) points from selected 22 data points

Theory: NLO+2-loop threshold corrections

Compare to HERA results from H1 and ZEUS

- → consistency
- → our results extend pT reach of HERA results to pT range 50-145 GeV
- $\rightarrow \alpha$ s is running at the highest pT measured so far!

Combined $\alpha_s(Mz)$

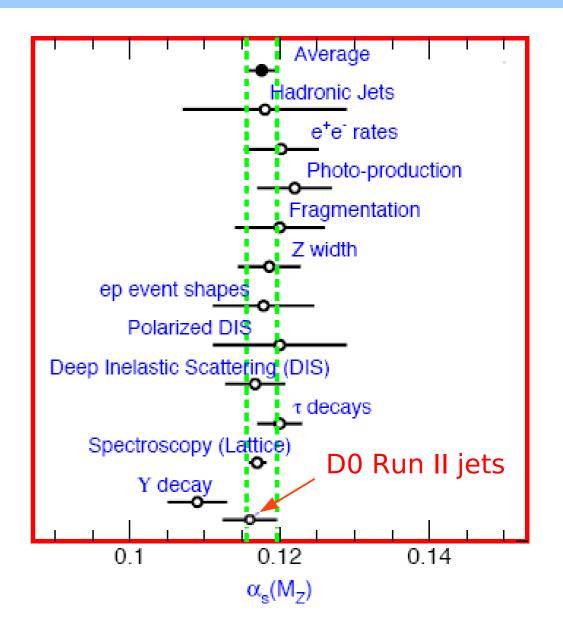
Based on 22 inclusive jet data points with x-test<0.15

Combined α s(Mz):

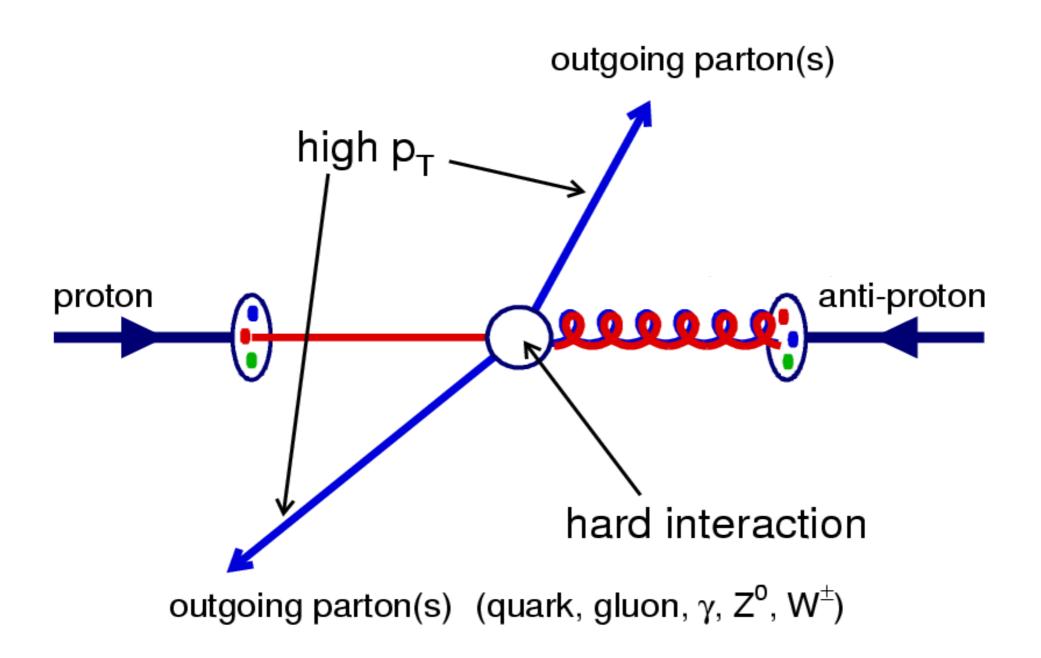
$$\alpha_s(Mz) = 0.1161^{+0.0041}_{-0.0048}$$
 NLO + 2-loop threshold corrections = $0.1202^{+0.0072}_{-0.0059}$ NLO

TABLE I: Central values and uncertainties due to different sources for the nine $\alpha_s(p_T)$ results and for the combined $\alpha_s(M_Z)$ result (bottom). All uncertainties are multiplied by a factor of 10^3 .

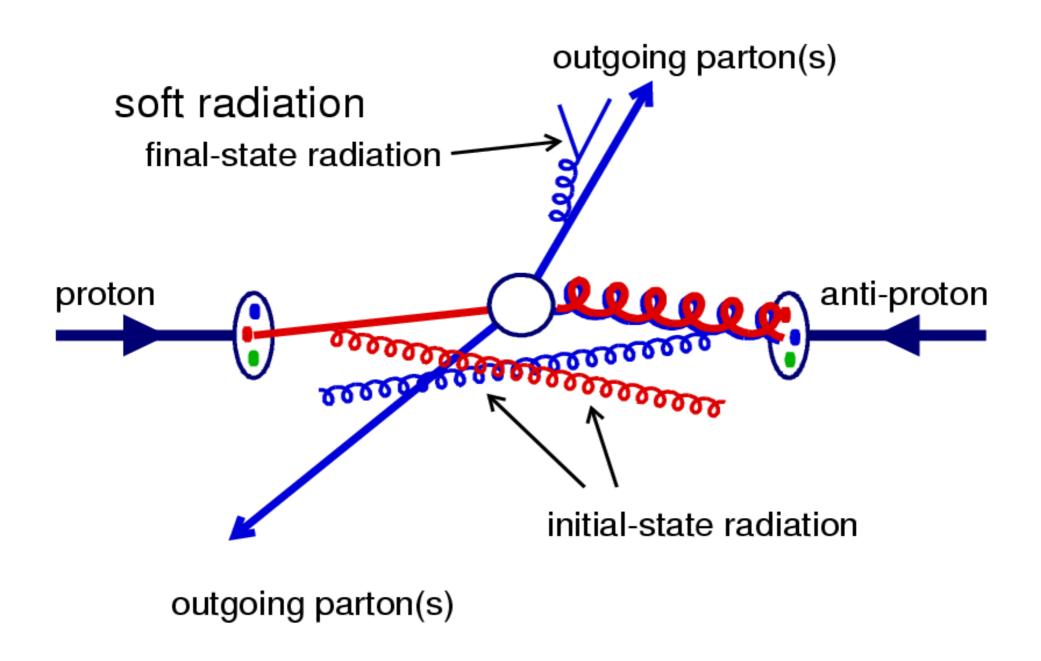
p_T range	No. of data	p_T	$\alpha_s(p_T)$	total	experimental	experimental	non-perturb.	PDF	$\mu_{r,f}$
(GeV)	points	(GeV)		uncertainty	uncorrelated	correlated	correction	uncertainty	variation
50 - 60	4	54.5	0.1229	+7.6 -7.7	±0.4	+4.8 -4.9	+5.8 -5.6	+0.4 -0.6 +0.6	+1.0 -1.9 +1.3
60 - 70	4	64.5	0.1204	$^{-7.7}_{+6.2}$ $^{-6.3}$	± 0.3	$^{-4.9}_{+4.1}$ $^{-4.3}$	$^{+4.5}_{-4.3}$		
70 - 80	3	74.5	0.1184	-6.3 +5.6 -5.6	± 0.3	-4.3 +3.8 -3.9	$^{-4.3}_{+4.0}$ $^{-3.9}$	-0.5 +0.6 -0.6	$-1.5 \\ +1.0 \\ -0.9$
80 - 90	3	84.5	0.1163	$-5.6 \\ +5.1 \\ -5.1$	± 0.3	-3.9 +3.6 -3.7	-3.9 +3.5 -3.5	$-0.6 \\ +0.7 \\ -0.7$	-0.9 +0.9 -0.6
90 - 100	2	94.5	0.1142	$-5.1 \\ +5.1 \\ -4.9$	± 0.3	-3.7 +3.5 -3.6	-3.5 +3.5 -3.3	-0.7 +0.8 -0.8	-0.6 +1.1 -0.6
100 - 110	2	104.5	0.1131	$-4.9 \\ +4.7 \\ -4.7$	± 0.2	$-3.6 \\ +3.4 \\ -3.5$	-3.3 +3.1 -3.0	-0.8 +0.8 -0.8	-0.6 + 1.1 - 0.6
110 - 120	2	114.5	0.1121	+4.2	± 0.2	-3.5 +3.1 -3.3 +3.2	$^{-3.0}_{+2.5}$	$^{-0.8}_{+0.7}$	$^{-0.6}_{+1.2}$
120 - 130	1	124.5	0.1102	$\begin{array}{r} -4.4 \\ +4.4 \\ -4.4 \end{array}$	± 0.2	+3.2 -3.4	-2.7 +2.6 -2.6	-0.8 +0.9 -0.9	-0.7 +1.4 -0.9
130 - 145	1	136.5	0.1090	-4.4 + 4.2 - 4.3	±0.3	$ \begin{array}{r} -3.4 \\ +3.1 \\ -3.4 \end{array} $	$^{-2.6}_{+2.3}$ $^{-2.4}$	-0.9 +0.9 -0.9	$^{-0.9}_{+1.5}$ $^{-0.9}$
50 - 145	22	M_Z	0.1161	+4.1 -4.8	±0.1	+3.4 -3.3	+1.0 -1.6	+1.1 -1.2	$^{+2.5}_{-2.9}$

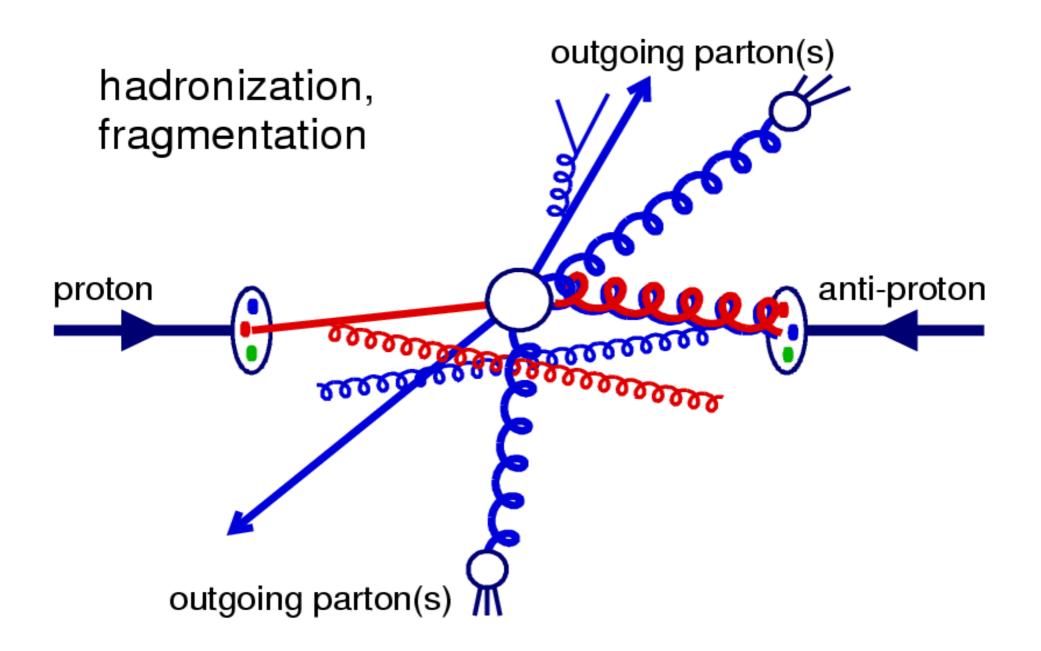

Main correlated uncertainties: JES, pT-resolution, luminosity

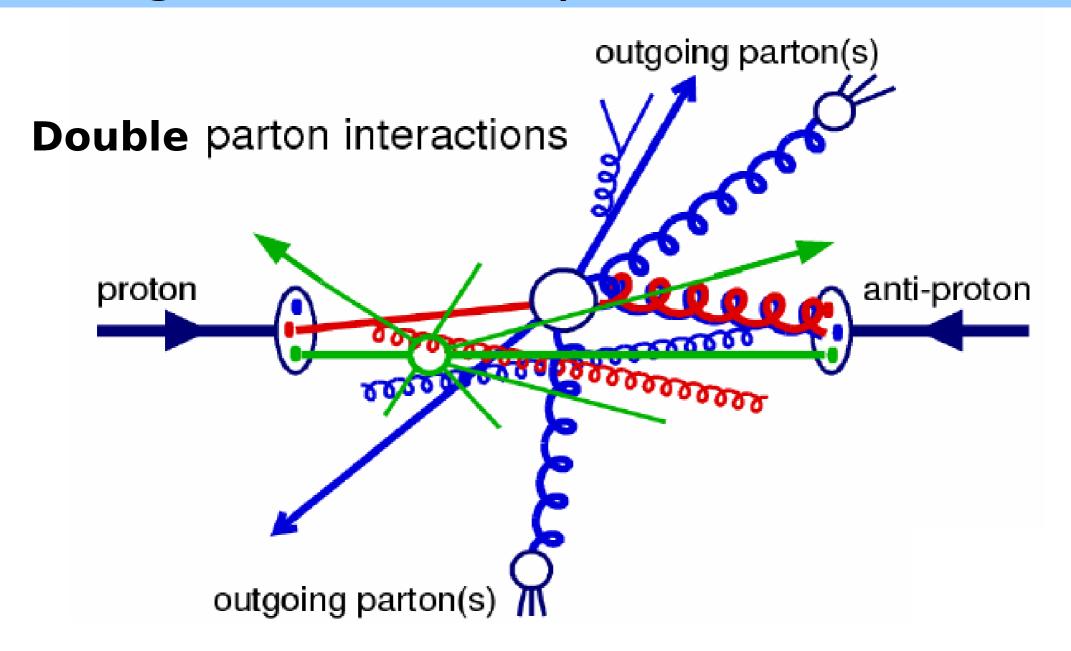
Summary on α_s


New α_s result from D0 inclusive jet pT cross sections

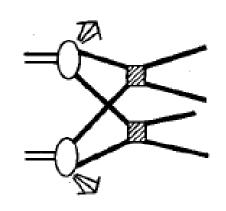
$$\alpha$$
s(Mz) = $0.1161^{+0.0041}_{-0.0048}$


- \rightarrow The only Run II result on α s
- → Improvement by about factor 3 as compared with Run I
- → Comparable precision with HERA jets (0.1189 ±0.0032)
- → Accepted by PRD RC (arXiv.org:0911.2710 [hep-ex])


Hadron-Hadron Collision


Hadron-Hadron Collision

Hadron-Hadron Collision



Hadron-Hadron Collision: from Single to Double parton interactions

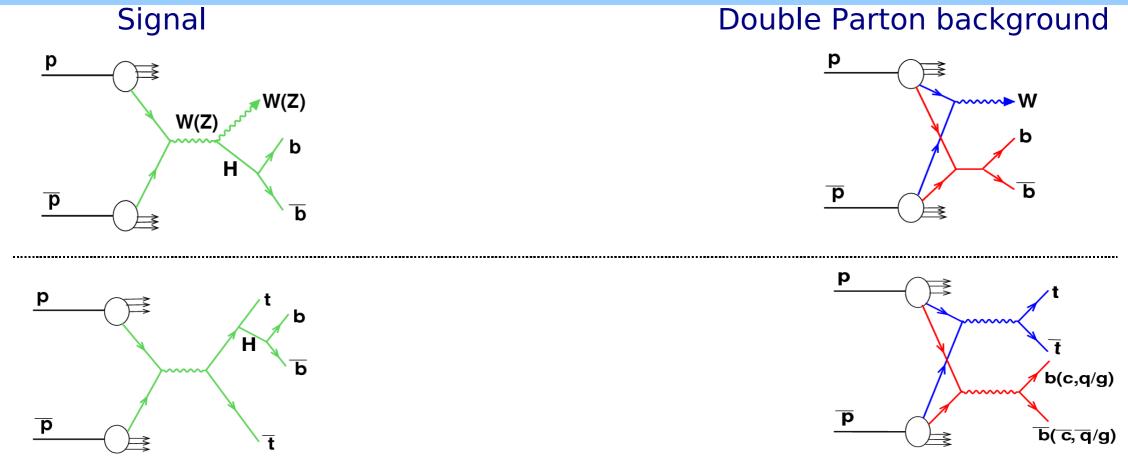
Double Parton Interactions in $\gamma+3$ jets events

- Motivations
- Event topology
- Discriminating variables
- Fraction of double parton events
- Effective cross-section measurement
- Conclusion

Double parton and effective cross sections

$$\sigma_{DP} = \frac{\sigma_A \sigma_B}{\sigma_{eff}}$$

opp - double parton cross section for processes A and B


 σ_{eff} - factor characterizing size of effective interaction region

→ contains information on the spatial distribution of partons.

Uniform: $\sigma_{\rm eff}$ is large and $\sigma_{\rm DP}$ is small Clumpy: $\sigma_{\rm eff}$ is small and $\sigma_{\rm DP}$ is large

- → Needed for precise estimates of background to many rare processes (especially with multi-jet final state)
- → Should be measured in experiment !!

Double Parton events as a background to Higgs production

- Many Higgs production channel can be mimicked by Double Parton event!
- Some of them can be significant even after signal selections.
- Dedicated cuts are required to increase sensitivity to the Higgs signal (same is true for many other rare processes)!
- => see example of possible variables below (and also 0911.5348[hep-ph])

Previous Double Parton measurements

	$\sqrt{s} \; (\mathrm{GeV})$	final state	$p_T^{min} ({\rm GeV/c})$	η range	Result
AFS, 1986	63	4jets	$p_T^{ m jet} > 4$	$ \eta^{jet} <1$	$\sigma_{eff} \sim 5 \text{ mb}$
UA2, 1991	630	4jets	$p_T^{ m jet} > 15$	$ \eta^{jet} <2$	$\sigma_{eff} > 8.3 \text{ mb } (95\% \text{ C.L.})$
CDF, 1993	1800	4jets	$p_T^{ m jet} > 25$	$ \eta^{jet} < 3.5$	$\sigma_{eff} = 12.1^{+10.7}_{-5.4} \text{ mb}$
CDF, 1997	1800	$\gamma + 3jets$	$p_T^{ m jet} > 6$	$ \eta^{jet} < 3.5$	
			$p_T^{\gamma} > 16$	$ \eta^{\gamma} < 0.9$	$\sigma_{eff} = 14.5 \pm 1.7^{+1.7}_{-2.3} \text{ mb}$

CDF 1997: photon+3jet events, data-driven method:

To extraxt $\sigma_{\rm eff}$: use of rates of events with Double Interaction (two separate $p \, \overline{p}$ collisions) and rates of Double Parton events from a single $p \, \overline{p}$ collision.

⇒ reduce dependence on MC and NLO QCD theory predictions.

Measurement of $\sigma_{\rm eff}$

For two hard scattering events:

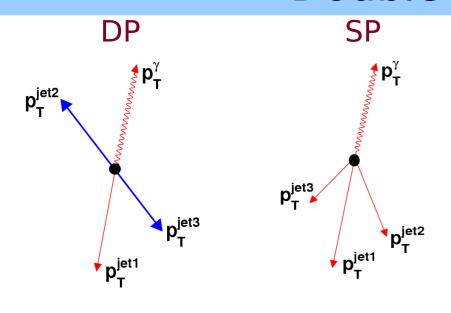
$$P_{DI} = 2 \left(\frac{\sigma^{\gamma j}}{\sigma_{hard}} \right) \left(\frac{\sigma^{j j}}{\sigma_{hard}} \right)$$

The number of Double Interaction events:

$$N_{DI} = 2 \frac{\sigma^{\gamma j}}{\sigma_{hard}} \frac{\sigma^{j j}}{\sigma_{hard}} N_{C}(2) A_{DI} \epsilon_{DI} \epsilon_{2vtx}$$

For one hard interaction:

$$P_{DP} = \left(\frac{\sigma^{\gamma j}}{\sigma_{hard}}\right) \left(\frac{\sigma^{j j}}{\sigma_{eff}}\right)$$

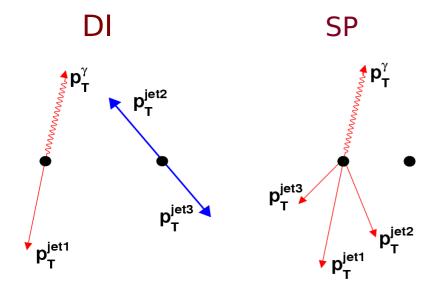

Then the number of Double Parton events:

$$N_{\mathit{DP}} = \frac{\sigma^{\gamma j}}{\sigma_{\mathit{hard}}} \frac{\sigma^{j j}}{\sigma_{\mathit{eff}}} N_{\mathit{C}}(1) A_{\mathit{DP}} \epsilon_{\mathit{DP}} \epsilon_{\mathit{1vtx}}$$

Therefore one can extract:

$$\sigma_{\text{eff}} = \frac{N_{DI}}{N_{DP}} \frac{N_{C}(1)}{2N_{C}(2)} \frac{A_{DP}}{A_{DI}} \frac{\epsilon_{DP}}{\epsilon_{DI}} \frac{\epsilon_{1\text{vtx}}}{\epsilon_{2\text{vtx}}} \sigma_{\text{hard}}$$

γ +3 jets events topology: Double Parton and Double Interaction events



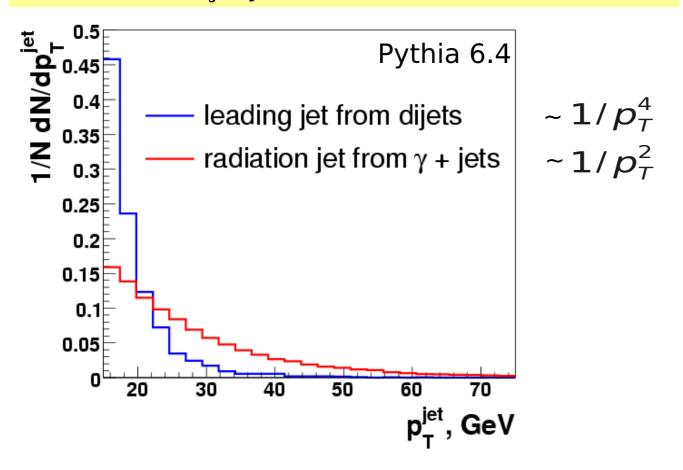
Signal: Double Parton (DP) production:

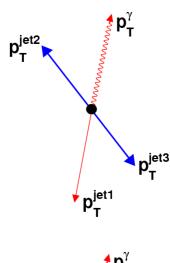
 1^{st} parton process produces γ -jet pair, while 2^{nd} process produces dijet pair.

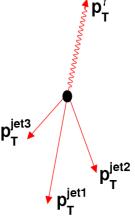
Background: Single Parton (SP) production:

single hard γ -jet scattering with 2 radiation jets in 1vertex events.

Background: Single Parton (SP) production:

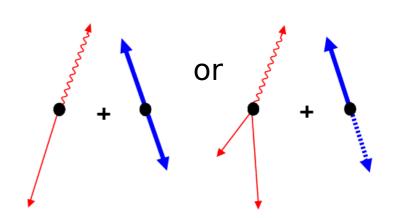

single hard γ -jet scattering in one vertex with 2 radiation jets and soft unclustered energy in the 2nd vertex.


Signal: Double Interaction (DI)production:


two separate collisions within the same beam crossing, producing γ -jet and dijet pairs.

Motivation for jet pT binning

Jet PT: jet from dijets vs. radiation jet from γ +jet events


- ▶ Jet pT from dijets falls much faster than that for radiation jets, i.e.
 - → Fraction of dijet (Double Parton) events should drop with increasing jet PT
 - => Measurement is done in the three bins of 2nd jet pT: 15-20, 20-25, 25-30 GeV

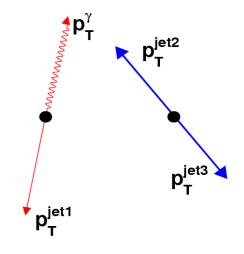
Double Parton interaction model

Built from D0 data. Samples:

A: photon $+ \ge 1$ jet from γ +jets data events:

- 1-vertex events
- photon pT: 60-80 GeV
- leading jet pT>25 GeV, $|\eta|$ <3.0.

B: ≥1 jets from MinBias events:


- 1-vertex events
- jets with pT's recalculated to the primary vertex of sample A have pT>15 GeV and $|\eta|$ <3.0.

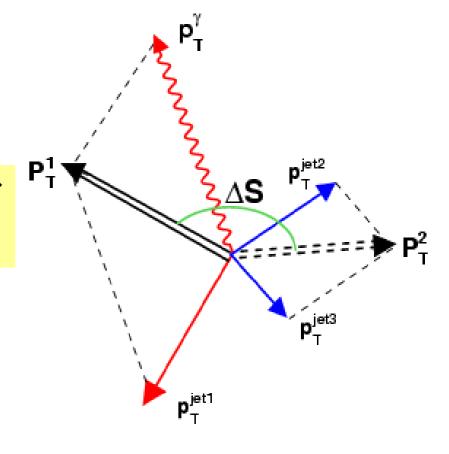
- ► A & B samples have been (randomly) mixed with jets pT re-ordering
- ► Events should satisfy photon+≥3 jets requirement.
- $ightharpoonup \triangle R(photon, jet1, jet2, jet3)>0.7$

Double $p \overline{p}$ Interaction model

Built from D0 data by analogy to Double Parton model with the only difference: ingredient events (γ +jets and dijets) are 2-vertex events.

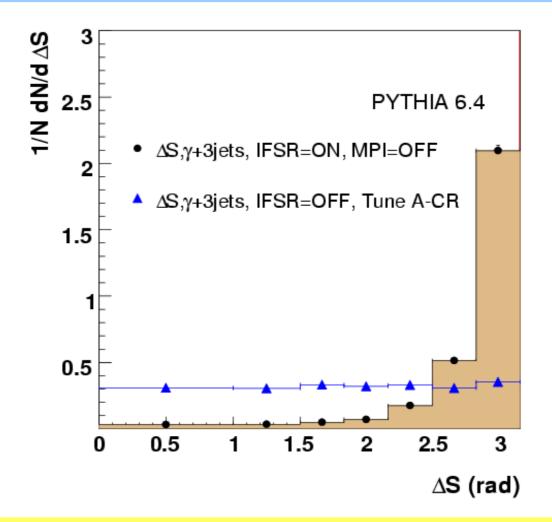
In case of 2 jets, both jets are required to originate from the same vertex using jet track information.

- \Rightarrow Main difference of Double Parton and Double $p\,\overline{p}$ Interaction signal events and corresponding SP backgrounds: different amount of soft unclustered energy in 1-vertex vs. 2-vertex events
 - → different photon and jet ID efficiencies.

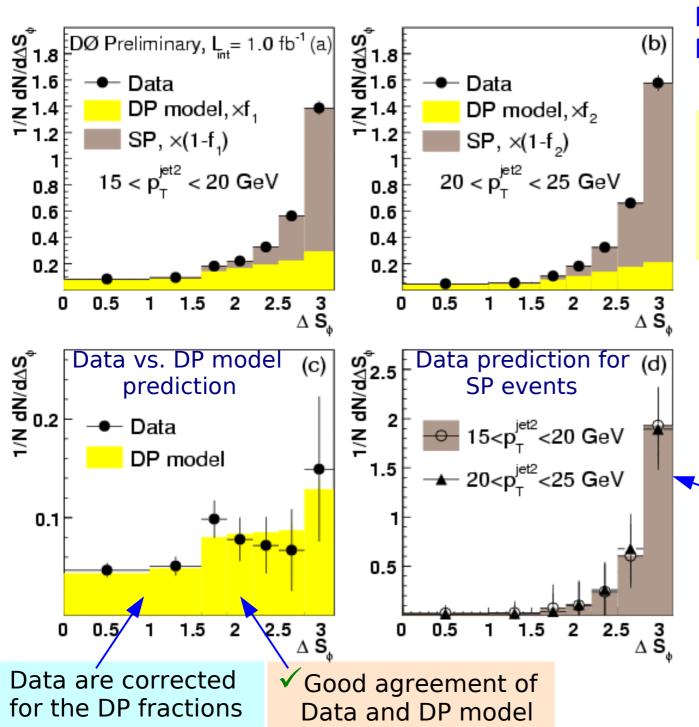

Discriminating variables

$$\Delta S = \Delta \phi(p_T^{\gamma, \text{ jet}}, p_T^{\text{jet}_i, \text{ jet}_k})$$

- \blacktriangleright $\Delta\phi$ angle between two best pT-balancing pairs \rightarrow
- ► The pairs should correspond to a minimum S value:


$$S_{\phi} = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{\Delta\phi(\gamma,i)}{\delta\phi(\gamma,i)}\right)^{2} + \left(\frac{\Delta\phi(j,k)}{\delta\phi(j,k)}\right)^{2}}$$

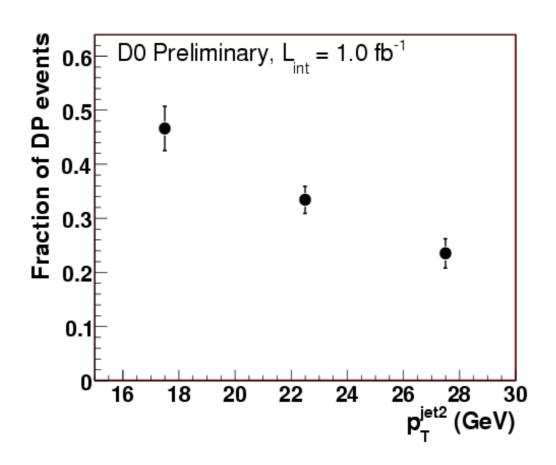
$$S_{p_{T}} = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{|\vec{P_{T}}(\gamma,i)|}{\delta P_{T}(\gamma,i)}\right)^{2} + \left(\frac{|\vec{P_{T}}(j,k)|}{\delta P_{T}(j,k)}\right)^{2}}$$


In the signal sample most likely (>94%) S-variables are minimized by pairing photon with the leading jet.

\triangle S distribution for γ +3jets events from Single Parton scattering

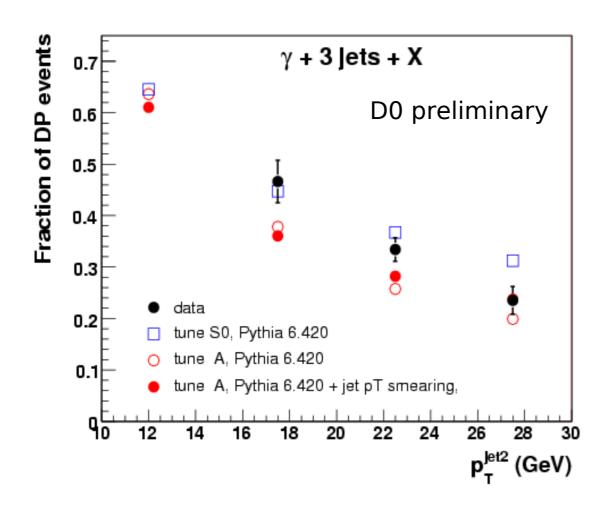
→ For " γ +3jets" events from Single Parton scattering we expect Δ S to peak at π , while it should be flat for "ideal" Double Parton interaction (2nd and 3rd jets are from dijet production).

The two datasets method



Dataset (a): 2nd jet pT: 15-20 GeV Dataset (b): 2nd jet pT: 20-25 GeV

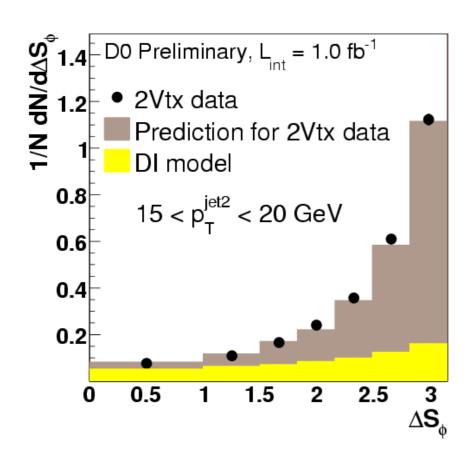
- ✓ Fraction of Double Parton in bin 15-20 GeV (f₁) is the only unknown
- → get from minimization.


- ✓ Good agreement of the △S Single Parton distribution extracted in data and in MC (see previous slide)
- →another confirmation for the found DP fractions.

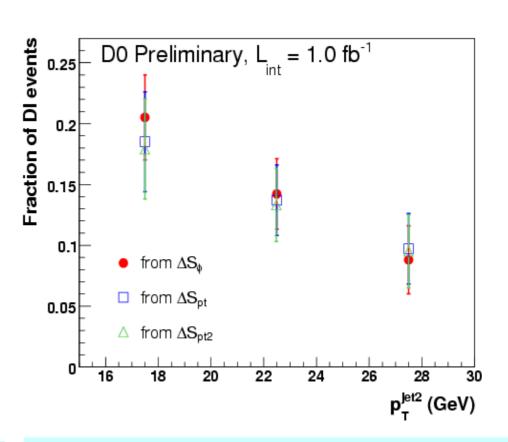
Fractions of Double Parton events

Fractions drop from \sim 46-48% at 2nd jet 15<pT<20 GeV to \sim 22-23% at 2nd jet 25<pT<30 GeV with relative uncertainties \sim 7-12%.

Fractions of Double Parton events: MPI models and D0 data



- Pythia MPI tunes A and S0 are considered.
- Data are in between the model predictions.
- Results are preliminary: data should be corrected to the particle level.
- Will be done later to find the best MPI Tune


Fractions of Double $p \overline{p}$ Interactions (DI) events

To calculate σ_{eff} , we also need N_{DI} = f_{DI} N_{2vtx}.

→ use △S shapes and get for by fitting DI signal and background distributions to 2-vertex data

Total sum of DI signal+bkgd, weighted with DI fractions, is in agreement with data

Main uncertainties in DI fractions are from building DI signal and background models

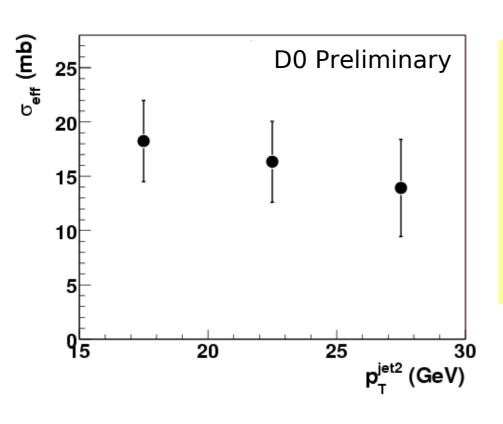
Calculation of Nc(n) and σ_{hard}

Total numbers of events with 1 and 2 hard $p \overline{p}$ collisions, Nc(1) and Nc(2), are calculated from the expected average number of hard interactions at a given instantaneous luminosity Linst:

$$\bar{n} = (L_{inst}/f_0) \sigma_{hard}$$

using Poisson statistics.

fo is a frequency of the beam crossings at the Tevatron in Runll.


 σ hard is hard (non-elastic, non-diffractive) $p \overline{p}$ cross section.

It is 44.7 ± 2.9 mb : from Run I \rightarrow Run II extrapolation.

$$R_C = \frac{N_C(1)}{2N_C(2)} \sigma_{hard} = 52.3 mb$$

Variation of σ_{hard} within uncertainty (2.9 mb) gives the uncertainty for Rc of just about 1.0 mb: increase of σ_{hard} leads to decrease of Nc(1)/Nc(2) and vice versa.

Calculation of $\sigma_{\rm eff}$

- σ_{eff} values in different jet pT bins agree with each other within their uncertainties (also compatible with a slow decrease with pT).
- Uncertainties have very small correlations between jet2 pT bins.
- One can calculate the averaged (weighted by uncertainties) values over jet2 pT bins:

$$\sigma_{eff}^{ave} = 16.4 \pm 0.3 (stat) \pm 2.3 (syst) mb$$

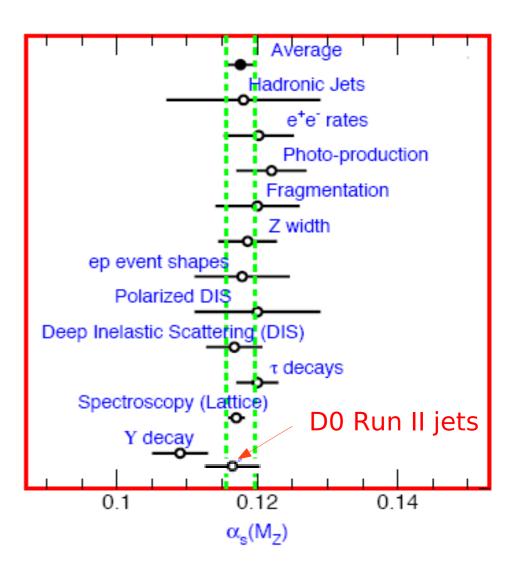
Main systematic and statistical uncertainties (in %) for $\sigma_{\rm eff.}$

$p_T^{ m jet2}$	Sy	ystema	$\delta_{ m syst}$	$\delta_{ m stat}$	$\delta_{ m total}$			
(GeV)	$f_{ m DP}$	$f_{ m DI}$	$arepsilon_{ m DP}/arepsilon_{ m DI}$	JES	$R_c \sigma_{ m hard}$	(%)	(%)	(%)
15 - 20	7.9	17.1	5.6	5.5	2.0	20.5	3.1	20.7
20 - 25	6.0	20.9	6.2	2.0	2.0	22.8	2.5	22.9
25 - 30	10.9	29.4	6.5	3.0	2.0	32.2	2.7	32.3

We have measured:

- Fraction of Double Parton events in three pT bins of 2nd jet: 15-20, 20-25, 25-30 GeV. It varies from about 0.47 at 15-20 GeV to 0.22 at 25-30 GeV.
- Effective cross section (process-independent, defines rate of Double Parton events) $\sigma_{\rm eff}$ has been measured in the same jet pT bins with average value:

$$\sigma_{eff}^{ave} = 16.4 \pm 0.3 (stat) \pm 2.3 (syst) mb$$


- The found σ_{eff} is in the range of those found in CDF measurements at lower scales
 - → it might indicate a stable behaviour w.r.t. the energy scales in the parton scatterings.
- Double Parton production can be a significant background to many rare processes, especially with multi-jet final state. A choice of the dedicated variables is advised. It also necessitates tuning of MC generators, for which these results should be very helpful.

Summary

New α_s result from Tevatron inclusive jet pT cross sections

$$\alpha_s(Mz) = 0.1161^{+0.0041}_{-0.0048}$$

- → Considerable improvement in comparison with accuracy of Run I jet result
- → Similar precision as HERA jets (0.1189 ±0.0032)
- → Good agreement with the world average: 0.1184 ± 0.0007

BACK-UP SLIDES

Comparison of $\gamma+3$ jets measurements: CDF'97 vs. D0'09

- ✓ Center of mass energy : 1.8 → 1.96 TeV
- ✓ About a factor 60 increase in the intergrated luminosity allows to change selections:

```
photon pT > 16 GeV (CDF) \rightarrow 60 < pT < 80 GeV (D0)
```

- ⇒ A better separation of 2 partonic scatterings in the momentum space
- ⇒ A higher photon purity (due to also tighter photon ID)
- ⇒ A better determination of energy scales of 1st parton process
- ✓ Higher jet pTs and JES correction to the particle level Jet pT (uncorr.) > 6 GeV → pT (corr.) > 15 GeV
- ✓ Binning in the 2nd jet pT : 15 20; 20 25, 25 30 GeV
 - ⇒ A better determination of energy scales of 2nd process
 - \Rightarrow Study of Double Parton fractions and $\sigma_{\rm eff}$ vs. 2nd jet pT
- \checkmark Double Parton fractions and $\sigma_{\rm eff}$ are inclusive: we do not subtract fractions of events with triple parton interactions.

PDF correlations and $\sigma_{ m eff}$

- Correlations between PDFs are possible and may even increase
 DP cross section at large (≥W/Z mass) factorization scales (10-40%!):
 - A.M. Snigirev et al: PRD68 (2003)114012, PLB 594(2004)171
 - D. Treleani et al : PRD72 (2005)034032
- Direct account of PDFs is in DP PDF (!): first evolution equations for dPDF (extension of sPDF) --> J.Gaunt and J.Stirling, 0910.4347 [hep-ph]

dDGLAP evolution:

if the two-parton distributions are factorized at some scale μ_0

$$G(x_1,x_2,\mu_0) = G(x_1,\mu_0)*G(x_2,\mu_0)$$

then the evolution violates this factorization *inevitably* at any diff. scale $\mu \neq \mu_0$:

$$G(x_1,x_2,\mu) = G(x_1,\mu)*G(x_2,\mu) + R(x_1,x_2,\mu)$$

where $R(x_1,x_2,\mu)$ is a correlation term.

$$d\sigma = \sum_{q/g} \int \frac{d\sigma_{12}d\sigma_{34}}{2\sigma_{\text{eff}}} D_p(x_1, x_3) D_{\bar{p}}(x_2, x_4) dx_1 dx_2 dx_3 dx_4$$

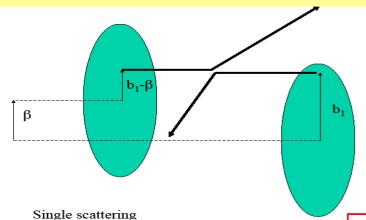
$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Models of parton spatial density and $\sigma_{ ext{eff}}$

- σ eff is directly related with parameters of models of parton spatial density
- Three models have been considered: Solid sphere, Gaussian and Exponential.

TABLE VI: Parameters of parton spatial density models calculated from measured σ_{eff} .

Model for density	$\rho(r)$	$\sigma_{ m eff}$	$R_{ m rms}$	Parameter (fm)	R _{rms} (fm)
Solid Sphere	Constant, $r < r_p$	$4\pi r_p^2/2.2$	$\sqrt{3/5}r_p$	0.53 ± 0.06	0.41 ± 0.05
Gaussian	$e^{-r^2/2a^2}$	$8\pi a^2$	$\sqrt{3}a$	0.26 ± 0.03	0.44 ± 0.05
Exponential	$e^{-r/b}$	$28\pi b^2$	$\sqrt{12}b$	0.14 ± 0.02	0.47 ± 0.06


- The rms-radia above are calculated w/o account of possible parton spatial correlations. For example, for the Gaussian model one can write [Trleani, Galucci, 0901.3089,hep-ph]:

$$\frac{1}{\sigma_{eff}} = \frac{3}{8\pi R_{rms}^2} (1 + Corr.)$$

- If we have rms-radia from some other source, one can estimate the size of the spatial correlations

Parton spatial density and $\sigma_{\rm eff}$

Introducing the 3D parton density $\Gamma(x,b)$ and making the assumption $\Gamma(x,b)=G(x)f(b)$ one may express the single scattering inclusive cross section as

$$\sigma_S = \int_{p_t^c} G(x)\hat{\sigma}(x, x')G(x')dxdx'$$

$$= \int_{p_t^c} G(x)f(b)\hat{\sigma}(x, x')G(x')f(b - \beta)d^2bdxdx'd^2\beta$$

$$\sigma_{D} = \frac{1}{2!} \int_{p_{t}^{c}} G(x_{1}) f(b_{1}) \hat{\sigma}(x_{1}, x_{1}') G(x_{1}') f(b_{1} - \beta) d^{2}b_{1} dx_{1} dx_{1}' \times \\
\times G(x_{2}) f(b_{2}) \hat{\sigma}(x_{2}, x_{2}') G(x_{2}') f(b_{2} - \beta) d^{2}b_{2} dx_{2} dx_{2}' d^{2}\beta \\
= \frac{1}{2!} \int \left(\int_{p_{t}^{c}} G(x) f(b) \hat{\sigma}(x, x') G(x') f(b - \beta) d^{2}b dx dx' \right)^{2} d^{2}\beta \\
= \frac{1}{2} \frac{\sigma_{S}^{2}}{\sigma_{eff}}$$

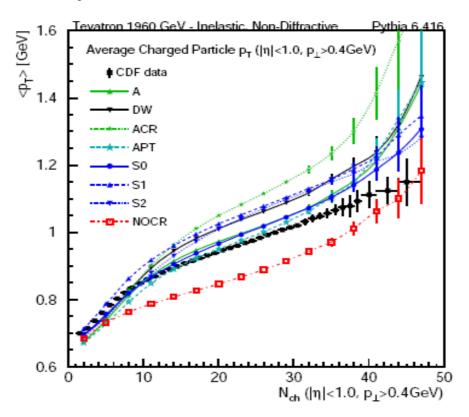
where
$$\sigma_{eff}^{-1} = \int d^2\beta \big[F(\beta)\big]^2$$
 is effective cross section

$$F(\beta) = \int f(b)f(b-\beta)d^2b,$$

and f(b) is the density of partons in transverse space.

1st and 2nd interactions: Estimates of possible correlations

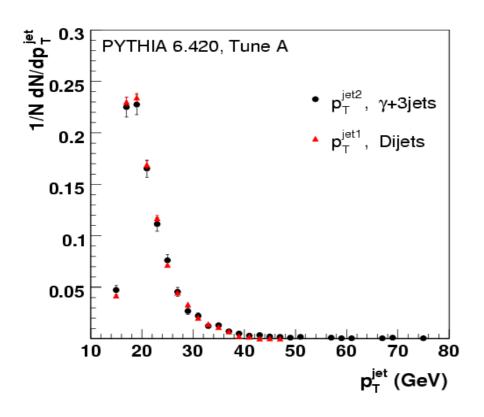
... in the momentum space:

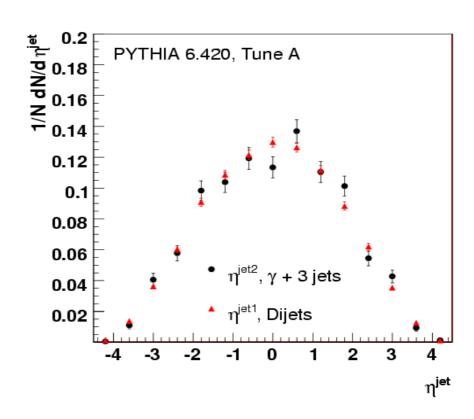

1st interaction: photon pT $\simeq 70$ GeV, \Rightarrow parton $xT \simeq 0.07$ 2nd interaction: jet pT $\simeq 20$ GeV, \Rightarrow parton $xT \simeq 0.02$

□ large (almost unlimitted) kinematic space for the 2nd interaction

... at the fragmentation stage :

- => Simulate y+3 jets and di-jets with switched off ISR/FSR; then additional 2 jets in y+3 jets should be from 2^{nd} parton interaction
- => compare 2^{nd} (3rd) jets pT/Eta in γ +3 jets with 1^{st} (2nd) jet pT/Eta in dijets

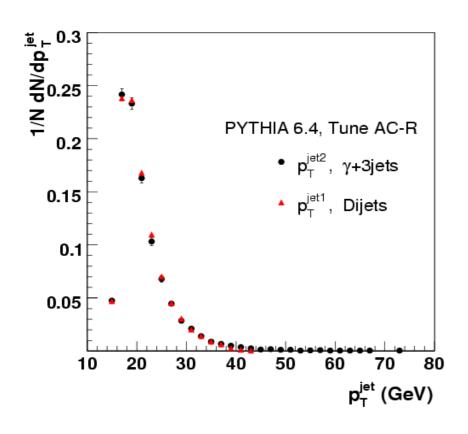

=>Tunes tested: A, A-CR, S0

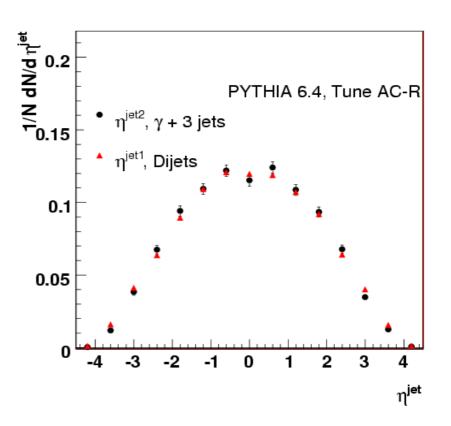


From D.Wicke & P.Skands hep-ph:0807.3248

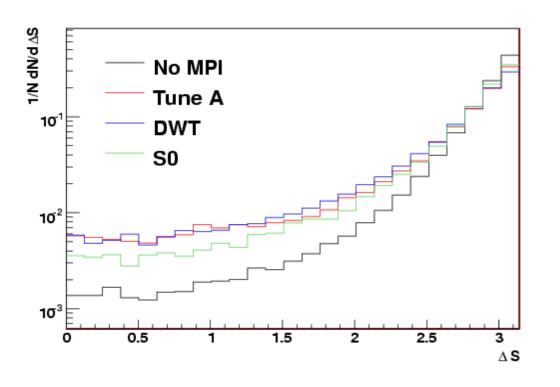
γ +3 jets and di-jets, IFSR=OFF: jets pT comparison.

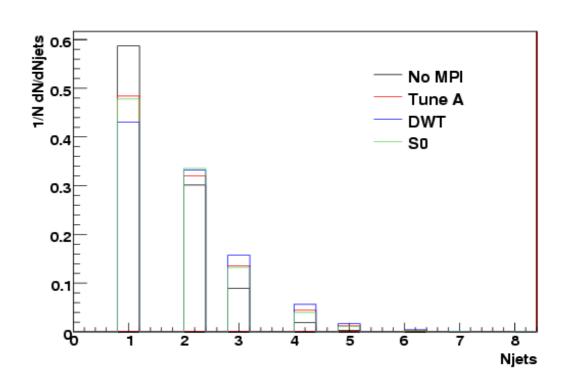
Tune A





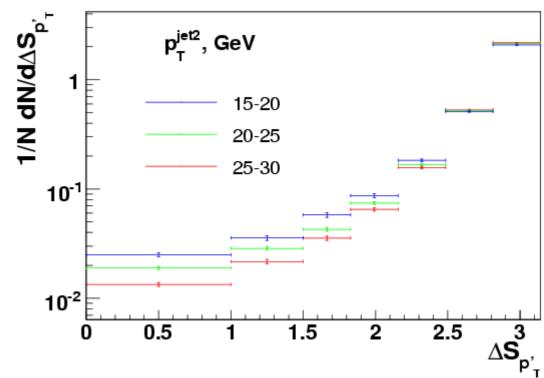
- pT and Eta distributions are analogous for jets from 2nd interaction in γ +3jets and di-jet events
- Analogous results (incl. 3^{rd} jet from $\gamma+3$ jets and 2^{nd} from di-jets) are obtained for Tunes A-CR, S0.


γ +3 jets and di-jets, IFSR=OFF: jets pT comparison.


Tune A-CR

Pythia MPI Tunes: △S and Njets





Pythia predictions with MPI tunes:

- ΔS is much broader for events with MPI events and almost flat at $\Delta S < 1.5$
- #events(Njest≥1) / #events(Njets≥3) is larger by a factor 2(!) for MPI events

SP events (Pythia): Δ S distributions

SELECTION CRITERIA

VERTEX:

- |Z|<60cm,
- Ntrk > = 3

JETS (pT corrected):

- Midpoint Cone algo with R=0.7
- $-|\eta|<3.0$
- #jets ≥ 3
- pT of any jet > 15 GeV
- pT of leading jet > 25 GeV
- pT of 2^{nd} jet \in (15,20), (20,25), (25,30) GeV.

PHOTONS:

- photons with $|\eta| < 1.0$ and $1.5 < |\eta| < 2.5$
- 60< pT< 80 GeV (good separation of 1st and 2nd parton interactions)
- Shower shape cuts
- Calo isolation (0.2 < dR < 0.4) < 0.07
- Track isolation (0.05 < dR < 0.4) < 1.5 GeV
- Track matching probability < 0.001
- $\Delta R(\text{any objects pair}) > 0.7$